Converting Starter Hydrations

How the StarterConverter works

This note presumes you understand baker's percentages and hydration. In brief, by definition, the ingredient percentage (IP) is the weight of the ingredient divided by the total flour weight (TFW).
(1) $\mathrm{IP}=\mathrm{IW} \div \mathrm{TFW}$
or TFW = IW / IP

From which it follows that the total weight of the ingredients, divided by the total baker's percentage of those ingredients is the weight of the flour.
(2) $\mathrm{TW} / \mathrm{TP}=\mathrm{TFW}$

Where TW is the sum of the weights of the ingredients and TP is the sum of the baker's percentages of the ingredients
Thus, a sample of 194 grams of 166% hydration starter can be separated into its ingredient weights as follows:

166\% Hydration Starter Recipe	Bakers' Percentage	Weight (grams)
Warm water	166	121
Flour, unbleached bread	100	73
Total	$\mathbf{2 6 6}$	$\mathbf{1 9 4}$

Since flour is the base ingredient for all of the baker's ratios, we keep it the same. For example, if we wish to use a starter at 100%, we will likely need to add the starter plus some water. Once we know the TFW of the proposed starter, we can quickly find the weight of the water by noting that the hydration of the starter is the IP of the water. Thus
$\mathrm{IW}_{\text {water }}=$ Hydration $*$ TFW
NOTE: You will need to express the Hydration as a decimal or divide the result by 100 when you are done.)
In the example below, we knew the weight of the flour was 73 , and the hydration was 100% so $\mathrm{IW}_{\text {wate }} \mathrm{r}=100 * 73 / 100$ or just 73

100\% Hydration Starter Recipe	Bakers' Percentage	Weight (grams)
Warm water	100	73
Flour, unbleached bread	100	73
Total	$\mathbf{2 0 0}$	$\mathbf{1 4 6}$

So to use this starter in a recipe calling for the 166% starter you would use 146 grams of 100% starter and add $48(121-73)$ grams of liquid.

